Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7987): 502-508, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968524

ABSTRACT

The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space1,2. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases3. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10-12 level4. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from 87Rb and 41K), observation of interspecies interactions, as well as the production of 39K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (87Rb and 41K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.

2.
Nat Commun ; 13(1): 7889, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550117

ABSTRACT

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

3.
EPJ Quantum Technol ; 9(1): 25, 2022.
Article in English | MEDLINE | ID: mdl-36227029

ABSTRACT

The National Aeronautics and Space Administration's Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link. These goals, identified through a multi-year design study conducted by the authors, include long-range teleportation, tests of gravitational coupling to quantum states, and advanced tests of quantum nonlocality.

4.
Nat Commun ; 13(1): 668, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115540

ABSTRACT

DENR and MCTS1 have been identified as oncogenes in several different tumor entities. The heterodimeric DENR·MCTS1 protein complex promotes translation of mRNAs containing upstream Open Reading Frames (uORFs). We show here that DENR is phosphorylated on Serine 73 by Cyclin B/CDK1 and Cyclin A/CDK2 at the onset of mitosis, and then dephosphorylated as cells exit mitosis. Phosphorylation of Ser73 promotes mitotic stability of DENR protein and prevents its cleavage at Asp26. This leads to enhanced translation of mRNAs involved in mitosis. Indeed, we find that roughly 40% of all mRNAs with elevated translation in mitosis are DENR targets. In the absence of DENR or of Ser73 phosphorylation, cells display elevated levels of aberrant mitoses and cell death. This provides a mechanism how the cell cycle regulates translation of a subset of mitotically relevant mRNAs during mitosis.


Subject(s)
CDC2 Protein Kinase/metabolism , Cyclin A/metabolism , Cyclin B/metabolism , Cyclin-Dependent Kinase 2/metabolism , Eukaryotic Initiation Factors/metabolism , Blotting, Western , CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division/genetics , Cell Line, Tumor , Cyclin A/genetics , Cyclin B/genetics , Cyclin-Dependent Kinase 2/genetics , Eukaryotic Initiation Factors/genetics , HeLa Cells , Humans , MCF-7 Cells , Mitosis/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Open Reading Frames/genetics , Phosphorylation , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine/genetics , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...